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1. Introduction. fince the turn of the century there has been signisican:

progress in the area of linear metrix differential systems urder various

sourdary (or suxiliery) conditions.

Rounitzky [3], Birkhoff and Langer [1], [2] considered systems where

i e L. . . -1
the differential operator is of the form LY = Y

n x n matrix) and the boundary conditions are end point conditions

AY(a} + BY(b) = 0,

+ PY (P is & continuous

Wilder [10], Langer [7] and Cole [4] extended the results to systems
m

having voundary conditions at interior points Z: Av(a,)
j=o J J
a = a < a. ... <a =D,
o 1 m
Whyburn [12] and Krall [6] considered integral boundary conditiong
b
Av{a) + BY(D) + jK(X)Y(x)dx = 0,
a

ole [5] considered the more general condition
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a
m

AjY(aj) + \/n K(x)Y(x)ax = O.

m

J=0

(]

In addition, Stallard [9] has considered interfacs conditions
Y (aj+)- AjY(aj-) = 0. Krall [6] has generalized the differential operator
by including a boundary form with the differential operator L.

All of these people have defined an "adjoint" system of one form or
another, which was usually motivated by the properties of the Green's
matrix of the original system. (For the exception, see Whyburn [12].)

The original system and the "adjoint" are mutually compatable or incom-
patable. If Gs(x,t) is the Green's function of the original system and
G, (x,%) that of the "adjoint", then Gs(x,t) = -a;(t,x).

a

A generalization of these boundary conditions would be one of the form
b

n m
+' - = 1 i t
‘£ K(x) v(x)dx +£gé AiY(ai )+i§; BiY(ai ) = 0, which includes all the

other conditions as special cases. We shall see that if there are m + 1
points in question (m intervals), then m such conditions are necessary
to achieve the systems previously mentioned. (This has already been done
implicitly, since, when interior point conditions were employed, the
matrices involved were assumed to be continuous at those interior points.
That 1is, Y(aj +) - Y(aj -) = Q)

There are also systems for which a Green's matrix is impossible to
define. These also have "adjoint" systems. Results of this kind concerning
nth order ordinary systems with end point conditions have been known for
a long time [8]. A Hilbert space setting is employed in deriving themn

We believe that such a setting is indeed the proper one for matrix

systems under boundary conditions previously discussed. We shall show that

| T——




the adjoint system in a Hilbert space is precisely the one defined pre-
viously by using Green's matrices. In addition we shall derive adjoint
systems when no Green's matrix exists. Since our boundary conditions
contain all the others as special cases, we can consider all such systems
at once.

The author would like to express his appreciation to Professor R. D.
Moyer for his many helpful criticisms and suggestions, which were made in

conversation while this research was being conducted.

2. The Differential Operator L. ILet us consider an interval [aO s am]

which is subdivided into m subintervals by aj ... & . (ao <a <...<a).

1 m

Definition. Let M denote the Hilbert space of n x n matrices

Y = <yij) with inner product

a
bed!

<y, z> = ) [Z*de,
O

ij

where * denotes complex conjugate transpose.

Let P bean n xn matrix which is continuous in x. Let Aij end

B,. be nxn matrices of constants. Let Ki(x) be n xn matrices in

H. We will consider boundary conditions of the form

8 m
Mi(Y) = Sm K,Ydx + Z Uij(Y) , i=1,... &,
a J=o
o
= - = = Q,
where Uij(Y) Ain(aj +) + Bin(aj ), and A o, B

Y(aj +) indicates the limit of Y(x) as x approaches 8 from above or below.
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Definition. The boundary conditions Mi(Y) are sald to be acceptable if

whenever there exist

constant matrices Ci such that

f
Y CiA
iij

i=1

#
then E: C.K, =
ii

i=1

i
=0, E: C.B,.=0, j=0, ...m,
=t

0O also.

Definition. Let gjg denote the set of all n x n matrices Y satisfying

1. Y is in H¥.

2. Y is absolutely continuous on each of the open intervals

(aj, 8.4

3. Y! + PY is

), 3 =0,.0.m - 1.

in H.

Definition. Let 35 denote the set of all n x n matrices Y satisfying

1. Y isin R

Definition. We define L Dby letting LY = Y’ + PY for all Y in ﬁ

Theorem 2.1. If the boundary conditions are acceptable, then 3Ef_i§

dense in H.

Proof. Let
oo Y : Y is
ﬁo ig orthogonal to

Clearly Hb is

If 37 were not dense

a
m

in ﬁo.‘y(aj) =0, 3= 0,.0em, f K, vax = C,
a‘O

the space ¥ spanned by Ki*"°°’Kﬁ*°

dense in ¥ - K. Therefore ?7 ig dense in |

in H, then there would exist an element

K*

= ljou."}i

e

1
T

in ¥



a

+ m
such that K = z CiKi and J, KY dx = O for all Y in % . But
i=1 a
o)
# m
then Z ¢, Z Uij(Y) = 0. Since the boundary conditions are
i=1 J=1
acceptable, K* = O, and we have arrived at a contradiction.

Throughout the remainder of this article we will assume that the

boundary conditions Mi(Y) are acceptable.

3. The Adjoint Operator L*. Various examples [5] [6] have shown that

integral terms in the boundary conditions affect the form of the adjoint

operator. We shall see precisely why this is so as we derive the adjoint 1*.

Lemma 3.1. If Z is in the domain of I¥ , then 7 1is absolutely

continuous in each of the intervals (a., a ), 3 =0,...m-1. There exist

g g+l
linear functional matrices ¢1(Z),... ¢h(Z) such that

£
x7 = 7! 4 - * AR
1*7 2z’ + pxz Z K, ¢i(m)
i=1

Proof. Let Y be in Ho (Theorem 2.1).

Then
a a
m m
*
f (1¥z) v ax = f 7x(y’ + PY)dx .
a a
@] [e]
Therefore
a a
m m
f 7z*xy ! ax = f (L*Z - P*Z)*Y ax .
a a

o] o




Since Y vanishes at ao,... & s integrating by parts,

-3 a

m m X %
7*Yy’ dx = - f (1*z-P*7)dt ] Y ‘ax
’ J
a'O aO

Hence

a
m

X *
j Z + f (L*Z-P*Z7)dt Y'dx = 0.

a
(6]
a
I

We must therefore find all those functions J such that Ljﬂ JY dx = 0.

a a

m e}

Suppose jﬂ Jy’ ax = 0. Let Ji be differentiable except at 8 el
\,

-
o}

and suppose Ji -+ J in H. Upon integration by parts,

a a
m
\[m Ji'Y dx = - \jﬂ JiY' dx = 0. Thus there exists a W such
& a
o &}
a
that 1imJ ' =W and f WY dx = O.  However, the differentiation
a8
O

operator is closed. .So if Ji - J and Ji' -+ W, then J! exists and

X
7' =w. 7 = wat.
8

m
Conversely, since \jﬂ KiY dx = O, it is easy to show that

[
a o
m

X
f fKidt Y'dx = O.

a
e}




X X X

Thus Z + \I\(L*Z - P*Z)dt is a linear combination of j- Kl*dt,...ﬂji K?fdtg

That is, there exist linear functional matrices ¢,(z),...¢ﬁ(z) such that

X

4
Z +f (L*¥Z - P*z)dt = Z f K,* at ¢i(z).
i=1

Z 1is easily seen to be absolutely continuous (except possibly at

ao,...,am), and
£
%7 = .77 = * .
I*Z 7z’ + P*Z ZKi ¢i(z)
i=1
We have I¥ represented in terms of & Dparameters ¢1(Z)... ¢%(Z)-

We still need to find boundary conditions for Z, as well as see when

these parameters can be eliminated.

Lemma 3.2. If Z 1is in the domein of 1*, then 7 satisfies the following

eguations.
£
_Z*(aj =) o+ E: ¢i(z)* B.. = 0,

1J
i=1

Proof. We easily compute

a 8
m m

o=f (1*¥Z)* Y dx- f 7*(1Y)dx

a a
o} o}



1]

Since Y(aj

a.
m J
Z f [(L*Z)*Y - z%(LY) ] dx
J=1 aJ_l
m
a ﬁ a.
) D)
-7% - *
7Z*Y ¢i(z) K.Y dx
j=1 aJ_l i=1 aj-l
m aJ am
Z - Z*Y - z ¢, (2)* f K.Y dx
3=1 8.1 i=1 8,
m aj f m
-7% + *
Z e . & #(2) z U 5(Y)
J=1 J-1 j=o
m f
-7K - - + ¥ ¥ % <7\
Yoy )t o) ¢ 2x(aY(age) ¢ ) g, (2) U (D)
j: i=1

+) and Y(a_ -) may be arbitrary,
J

#

a(a, )+ ) B¢ B =0,

J
i=1




#

X * =

A CRE Z ¢; (2% A5y 0,
i=1

J=1l,.0. m.
The converse of these calculations is trivial. Hence we are led to

the following.

Theorem 3.1. The domain of IL*, gﬁ*, consists of all those n x n

matrices 7 which satisfy

1. 7z dis in 335.

2. There exist parametric linear matrix functionals

¢l(Z) - ¢ﬁ(Z) such that

#
-z(aj =)+ Z Bij* ¢i(z) =0,
i=1

#

* =
Z(aj-l +) + z: Aij-l ¢i(Z) 0,
i=1
Jg=1,... m.

If 7 is in &X' *, then

%

I¥7 = -z + P*7 - Z K* ¢i(z),
i=1

There are 2m equations for the # linear functionals ¢l”'°’¢k"
It is sometimes possible to achieve two expressions for each. Substitu-
tion into the expression for L¥ , eliminates them there. Equating the

different expressions for each gives boundary conditions.
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4. Dpifferential-Boundary Operators. If any of the K's in the boundary

conditions determining & is different from zero, I cannot be szelf-
adjoint. 1In order to have selfadjointness as a possibility, the form of
the operator L must be extended so that it resembles the form of the
adjoints we have just found. A beginning step is bound in [6]. We

extend those results to the present situation.

m
Definition. Let Cij and Dij’ i=1,... 4. Let Wi(Y) = ;gg

[Ci;lY(a;l +) + in(aj 1, i=1,... 4. Let Hy be in H, i =1,...1.
2

We define L, by letting LY =Y’ +Pr+ ) HV.(Y) forall ¥ ind .
N i=1

Lemma L4.1. If 7 1is in the domain of L ¥, then Z is absolutely

continuous in each of the intervals (aj, aj+l) , J=0,.4., m-1. There

exist linear functional matrices @,(Z),... (z) such that
£

#
¥7 = 7! - *
L 2 z! + Pxg Z Ky ¢i(z).
i=1

The proof is identical to that of Lemma 3.1.

Lemma 4.2. If Z is in the domain of Lb* , then Z satisfies the

following eqguations.

#
—Z*(aj =) + 2: ¢i(z)* Biy -

i=1 i

™Mo

1

a
I
\jA Z*¥H.,dx D,, = O,
i ij
a
(0]




-11~-

f £ am
¥ -+ 7 )% - ‘* -
2+(ay ) +) Z 8 ()% agy f 7% Hydx O, ) = O,
i=1 i=1 ao

J=1 ... mn
The proof is only slightly more complicated than that of Lemma 3.2.
Again the converse of these statements is trivial, and we are led to

the following.

Theorem 4.1. The domain of Lb* ,335*, consists of all those n x n

matrices Z which satisfy

le 7Z 1is in 250.

2. There exist parametric linear metrix functionals

¢1(Z),-~- ¢h(Z) such that

f Lz am
- - + * - D % * = 0
z(aj ) + Z B 5 ¢i(z) Z 1 f H* 2 ax ,
i=]1 i=1 8 a
A £ © m
* g - * AR =
z(aJ_l ) Z Ajsa ¢, (2) Z Cis1 j H*Zdx = G,
i=]1 i=1 a
(o]
J =1, . m.

If Z ism m*, then

#

¥y = o - * .
L2 z' + Pz Z K ¢i(z)

. 1
i=
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5. Some Examples.

1. Consider the system LY = Y’ + PY, with endpoint boundary condition
AY(ao) + BY(a,) = 0. The adjoint is then defined by 1*Z = -Z' + P*Z with
boundary conditions -Z(ai) + B*¢l(Z) = 0, Z(ao) + A*¢l(Z) = 0. If

A or B has an inverse, ¢l(Z) can be eliminated to give the adjoint

the form usually found.

2. Consider the system LY = Y’ + PY with boundary conditions

m
E: AjY(aj) =0, Y(aj -) - Y(aj +) =0, §=1,... m-1. The adjoint
J=1

operator is the same as before. I*Z -7’ + P*¥Z. The boundary conditions

are
-Z(aj -) - 851 (z) =0 j=1,... m-1,
-z(a =) - A ¥ ¢(2) =0,

and Z(aO +) + A* ¢i(Z) =0

* + =0, J = ceom=1o
If we agree that Z(aO -) = O and Z(am +) = 0, then ¢2(Z) through
¢m(Z) can be eliminated, giving
- - = - * ol =
Z(aj +) Z(aj ) Aj ¢l(z), j=0,... m

3. If the m point boundary condition in the previous example is replaced

a

m m
by E: AjY(aj) + b[\ Klex = 0, the boundary values for 7 are the
J=1 a,

same, but L*Z = -2’ + P¥Z - K)* ¢ (2).
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L. Consider the system LY = Y’ + PY with boundary conditions

-) = + -] = j = soe=1.
AY(a  +) +3BY(a -) =0, AjY(aj+) BjY(aj ) 0, 3= 1,...m1
The adjoint operator is IL*Z = -7z’ + P¥7Z. The adjoint boundary conditions

are

-Z(aj -) + Bj* ¢j+l(z) =0, J=1,...m-1,
- - * =
z(a -) +BX ¢ (2) =0,
and

Z(aj +) + A (z) =0, j=0,00. m-1.

J ¢j+l
Again, if the various A's or B's have inverses, the parasmeters ¢j(Z)

can be eliminated.

5. Consider the system.

?
= +
LY =Y’ +PY+H [CY(aO) + D Y(al)],

B
8

AY(aO) + BY(al) + ‘jﬂ K,Yax = 0.
a
o]

The adjoint system is

%7 = 27! - K ¥
L *Z 2+ P2 - K ¢l(z) s

a

1

-Z(al) + B*¢l(Z) - D \jﬁ Hl*de = 0,
a
0]

ol
* - % * =
z(ao) + A ¢l(z) C \]ﬂ H,*Zdx = O.

a
0

Under the conditions given in [6], this adjoint system is equivalent to the

one defined in [6]. We note that in all of these examples, there were m
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boundary conditions for the m intervals (m + 1 points) under discussion.
In all of these examples Green's matrices have been derived, and, with

the excepticn of the last one, each has an eigenfunction expansion associated
with it. It seems reasonable to expect that this will slways be true.
Solving a nonhomogeneous equation in each of m intervals produces m
arbitrary constants of integration. In order to specify them, m eqgua-
tions are needed. More equations overdetermine the system. TFewer

underdetermine it.
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